[image: image2.jpg]' -
Bit-Storm, Robotissl
- o4

	Project Design Document
	November 14th

2007

	The project design for the spring 2008 IEEE robotics competition.
	CS 425 – 001 Senior Project: Fall 2007

Table of Contents
4Section 1: System Overview

4Section 1: System Overview

41.1 Requirements

41.1.1 Functional Requirements

4Movement and Navigation

4Object Handling

5Camera and Color Recognition

51.1.2 Non-Functional Requirements

5Movement and Navigation

5Object Handling

6Camera and Color Recognition

7Section 2: Main Architecture

72.1 System Architecture Map

82.2 Architecture Description

82.2.1 Frame (ECE Responsibility)

8
Wheel Frame

9
Controller Frame

92.2.2 Lift System (CS & ECE Responsibility)

10
Fork Lift

11o
180 Degree Turnstile

11
Turnstile XBC Code

11
Turnstile PSOC Code

11
Turnstile Track

12
Turnstile Motor

12o
Lift Motor System

12
Lift System XBC Code

12
Lift System PSOC Code

12
Gear System

13
Two Motors

13o
Alignment System

13
Two Bend Sensors

14
Alignment XBC Code

14
Alignment PSOC Code

14
Strain Gauge

15o
Graphical Display

15o
XBC-to-PSOC Interface Code

15o
Weight Calculation Code

162.2.3 Vision System (CS & ECE Responsibility)

16
Line Following System

16o
Nine Light Sensors

17o
Line Following High Level XBC Code

17o
Line Following PID PSOC Code

18
Color Tracking System

18o
Color Camera

18
Movement Motor

19
Movement Code

19o
XBC Color Model

19o
Decision Making Code

202.2.4 Movement System (CS & ECE Responsibility)

20
Physical Drive-Train

20o
Four Wheel Encoders

21
XBC Code

21
PSOC PID Code

21o
Four Swedish Wheels

22
Movement Code

23Section 3: Functional Prototypes

233.1 Functions and Libraries to Be Developed or Used

273.2 Global Variables and Constants

30Section 4: System Interfaces

304.1 Subsystem Interfacing Between the PSOC and XBC

314.2 Hardware to Software Interface Design

33Section 5: Notes on the User Interface

34Section 6: Notes on Modular Design

35Section 7: Languages

36Section 8: Additional Design Considerations

368.1 Path Planning Algorithm

378.2 Code for the Wavefront Algorithm

398.3 Algorithm Diagram

40Section 9: Conclusion

41Section 10: Glossary

Section 1: System Overview
1.1 Requirements

1.1.1 Functional Requirements

Functional Requirements are defined as “what” the system must accomplish. These requirements steer away from details of the behavior of the functions and the implementation of the functions.
Movement and Navigation

Movement and navigation is easily the most important aspect of this project. Without a good system in place to handle these functions, none of the other functions matter. The robot will require some kind of movement and navigation system to traverse the competition area. The competition area will consist of an 8’x8’ board with three objects and three receiving areas. There will be lines drawn between each object and receiving area to facilitate line following.
Object Handling

The robot must have some method to pick up and carry objects. The objects must be lifted a slight amount off of the playing surface in order to navigate across any potential ridges in the playing field, and also to lift the objects into the “garage” in the final round. The robot must have some capacity to weigh the objects in relation to each other in order to place them in the correct goal areas. The robot must also be able to tell when it is carrying an object. The casks themselves will resemble a “dumbbell” shape, with a soup can on its side with a square piece of wood on either side so that it will be raised off the board.
Camera and Color Recognition

The robot must make use of exactly one camera in some capacity. The robot must also have some sort of color recognition ability for various tasks during the competition.
1.1.2 Non-Functional Requirements

These are requirements that specify details about the system and how the functions are performed. Actual design and implementation of the functions are saved for later design documents.

Movement and Navigation

The robot must have path finding capabilities for maneuvering around an 8x8 foot arena. The competition is timed, so the movement must be accurate the first time, and reasonably fast. It is also required that we use the PSOC to facilitate movement. “Bang-Bang” control must be avoided, as it will cost a great deal of time in the competition. Movement outside of the arena results in disqualification, so the robot must be able to remain inside the arena.
Object Handling

The robot must be able to pick up objects and carry them across the game board without dropping them. The robot must also keep the objects on the playing board at all times, as pushing them off of the board will result in disqualification. It is desirable that the robot be able to weigh the objects in the order they are picked up very precisely, so as to garner bonus points for the correct display of the weights.

Camera and Color Recognition

The code for the robot is to be kept general, so that configuration for color models can be done before rounds. The color models must not be hard-coded. Color recognition must be tested in various lighting environments and on various textures.
Section 2: Main Architecture
2.1 System Architecture Map
[image: image1.jpg]Turnstile XBC Code

_ Turnstile PSOC Code
e 4 180 Degree Turnstile —

\\ Y TUrnstile Track
I
Turnstile Motor

Lift System PSOC Code

System XBC Code

/

Lift Motor System | ——

/ e 4 \Wheel Frame

D
\ S 4 Controller Frame

Gear System

/

T »
Fork Lift \
D
2 Bend Sensors
> Alignment Syste

/ .
m » Alignment XBC Code

\

Lift Syst
ift System / MEENNE Y Graphical Display Alignment PSOC Code

\ ———b% s 4 BC-to-PSOC Interface Code
i \ Weight Calculation Code
N Lift System —> g

Code
/ e @ O Light Sensors

. : Line Following High
e o4 Line Following System —> eviel XBE Gode

IEEE Robot

) Line Following PID
PSOC Code

MY \/ision System > Movement Motor

o
S .o cone

\
_ — D

XBC Color
e 4 Color Tracking System |mmm > Model

DeC|5|on

Code

o —

/ XBC Code
s 4 4 Wheel Encoders
/ 5 P_hyflcal. PSOC PID Code

Drive-Train \
e 4 Movement System mmm— 4 4 Swedish Wheels

T~ R Movement
Code

2.2 Architecture Description
The final system, referred to as the IEEE Robot in the diagram above, is complex and is composed of many different subsystems which further break down into individual modules. This system has been designed with the utmost modularity in mind in order to facilitate parallel development between the team on each of the systems. At the highest level, the robot is comprised of four major components: the frame, the lift system, the vision system, and the movement system. Each of these components is comprised of many smaller subsystems and modules which are outlined below.
2.2.1 Frame (ECE Responsibility)
[image: image2.jpg]
The frame is the most straightforward component of the system. It provides the physical structure upon which all other systems and modules will be attached. In this way, it physically ties the system together.
· Wheel Frame

The wheel frame is defined by the physical skeleton which provides the frame for the wheels, motors, encoders, and controller frame to all attach. The robot has been designed to be omni directional and not require turning. As such, the wheel frame has been designed symmetrically so that there is no clear front or back to the robot. The frame will take an octagonal shape.

· Controller Frame

The controller frame is simply the framework which allows for the XBC, PSOC, and other electronics to safely sit mounted on the robot. This frame will allow for housing of the electronic equipment mentioned above, and will attach to the wheel frame.

2.2.2 Lift System (CS & ECE Responsibility)
The lift system provides the robot with the capability to lift, carry, and weigh the objectives in the contest. It was designed with many requirements in mind such as the weight ranges to be carried and requiring a small amount of lift off of the board. This system was also designed with omni-directionality in mind so that the robot would not require turning during any point in the competition.

· [image: image3.png]/ e @ Wheel Frame

— @

I 4 Controller Frame

Fork Lift
The fork lift subsystem is concerned with the ability to lift the objectives in the contest. This system consists of the physical fork lift, the turnstile to rotate the fork lift, and an alignment system to insure that the robot is able to pick the objects up from the correct angle of approach. The fork lift possesses the ability to pick up and carry objects around without tossing them or dropping them. It will tilt back roughly 15 degrees to avoid the objects rolling off of the lift while in transit to the goal.
· 180 Degree Turnstile
The turnstile is concerned only with rotating the fork lift around the robot with 180 degrees of freedom. It will only allow for two resting positions of the forklift, one in the “front” and one in the “back.” This will allow the robot to move about the game board without having to turn at any point. This eliminates complexity in the navigational systems of the robot as well as speeds the overall performance of the robot.

· Turnstile XBC Code

The turnstile XBC code is concerned with only the high level use of the turnstile. This code will be very simplistic, mostly just sending signals to the lower level PSOC code when the strategic algorithms decide that the turnstile should be rotated to the opposite position from present.
· Turnstile PSOC Code

The turnstile PSOC code will operate at a much lower level of logic to successfully rotate the turnstile. It will interface with the turnstile motor to rotate the turnstile when the XBC sends it the appropriate signal. This code will assure that the turnstile rotates as needed, when needed, and that it will not end up in the incorrect position or drift while not being moved.
· Turnstile Track

The turnstile track is simply the physical structure that the fork lift will rotate about. The track is flat, metal, and bent into a circle. It will be attached to the frame of the robot.
· Turnstile Motor

The turnstile motor will provide the force required to spin the turnstile around the track when required. The motor will interface and receive signal from the PSOC.
· Lift Motor System
The lift motor system provides the capability to lift and lower the fork lift when required. The system is concerned with moving the lift slowly enough that objects are not dropped or thrown.

· Lift System XBC Code

The lift system XBC code is simple and functions only to send high level commands to the PSOC to raise or lower the lift. This is done when the main strategic algorithm code decides that fork lift operation is necessary.
· Lift System PSOC Code

The lift system PSOC code contains the lower level operation code for the fork lift movement. It directly interfaces with the motor, sending signals when fork lift movement is required.
· Gear System

The gear system is a physical construct which “gears down” the power from the lift system motor to assure that the fork lift will not raise or lower so rapidly that objects are thrown. This also provides a great deal more power for lifting and holding objects than would otherwise be possible by merely providing less power to the lift motors.
· Two Motors

The lift motors are interfaced with the PSOC and the fork lift itself to facilitate movement of the lift when required. They receive more than enough power from the batteries to lift the weights that are required. This allows for worst-case planning and possible competition rules changing.
· Alignment System
The alignment system is in place to monitor the angle of approach that the robot takes to pick up the objects. It has been designed as such that if the objects are not put perfectly in the center of their designated areas, or if something bad should happen, the robot will be able to compensate and pick up the objects correctly rather than approaching them at a bad angle and pushing them around, possibly disqualifying the team.
· Two Bend Sensors
Bend sensors are physical devices that send a signal when it is detected that they are bent. They are very sensitive and will signal for even very slight reactions. These will be placed on either side of the fork lift so that when the robot approaches the objects to pick them up, it can be detected that the fork lift is not perfectly positioned about the object to properly pick it up.
· Alignment XBC Code
The alignment XBC code will interface with the alignment PSOC code. The XBC will be told when the bend sensors are being triggered, and thus it can decide if the approach onto the object is at a bad angle. From this data, the XBC can decide if the robot needs to back up and try a slightly varied approach to successfully pick up the object.
· Alignment PSOC Code

The alignment PSOC code will interface directly with the bend sensors themselves. It will be able to tell the XBC what kind of situation is being encountered from the bend sensor information. It will be able to tell the XBC that a left or right adjustment needs to be made on the object approach, or if everything is going well.
· [image: image4.png]e g Graphical Display

e 4 Strain Gauge el XBC-to-PSOC Interface Code

e 4 Weight Calculation Code

Strain Gauge
A strain gauge is a device that can indirectly determine the weight of an object with electric current. The device is flexible, and when it bends the resistance of the electric current changes depending on the direction and amount that the object bends. This device outputs raw readings about the electric current. These readings can be used to calibrate
· Graphical Display

The graphical display is a simple, 2 color LCD display which can be used to display the weights of the objects picked up in the order that they were picked up. This is required for bonus points in the competition. The display will interface with the PSOC code to display the weights.
· XBC-to-PSOC Interface Code

This code is used for communication between the XBC and the PSOC concerning the data gathered from the strain gauge. Through this code, the PSOC will be able to tell the XBC whether the object is the light, medium, or heavy of the three objects. This will allow the XBC to make the necessary logical decisions on how to proceed.
· Weight Calculation Code

The weight calculation code is PSOC level code which will have to be manually calibrated and coded based upon the readings of various known weights measured with the strain gauge. The raw data from the strain gauge is measured with no weigh, and with many different known weights in order to construct a linear graph interpreting the raw data as weight. The data from this graph is used to create a formula which is used to translate the raw data into usable weight in grams.
2.2.3 Vision System (CS & ECE Responsibility)
The vision system is the subsystem which allows the robot to optically gather data about the world around it. This consists of a color camera system and a line following system.
· Line Following System
[image: image5.png]Turnstile XBC Code

B g 180 Degree Turnstile

\\ Y 1 stile Track
T

Lift System PSOC Code

/

T

T

2 Bend Sensors

M Alignment XBC Code

—

Alignment PSOC Code

The line following system allows the robot to follow the lines on the game board in order to navigate. This allows for the avoidance of complete reliance upon more error prone methods of navigation, such as mapping and dead reckoning. These methods will still be used to some extend, but the primary metric used to determine where the robot currently is will be based upon its sensory perception of the lines and intersections that it is traveling on. This system is perhaps one of the most important in terms of efficiency of the robot, as much time can be gained or lost by the degree of smoothness of the robots navigation.
· Nine Light Sensors

These are the physical sensors that detect the presence of light. They function by detecting the black lines drawn on the white board. They will be mounted on the bottom of the robot as low to the ground as possible so as to be shielded from as much outside light as possible. They will be mounted in an “X” pattern in order to provide for as much error tolerance as possible such as the case when one of the sensors passing over a line without detecting it.
· Line Following High Level XBC Code

The XBC code will be kept as high-level as possible, as this is where the PID PSOC code will truly shine in its automation of the movement of the robot. The XBC code will simply tell the PSOC to travel up to the next “intersection” of lines and then report back for further instructions. The XBC code will mostly be concerned with the overall navigation between objects and their goals, making all of the major strategic decisions involved.
· Line Following PID PSOC Code

The PID PSOC code will be in charge of the low-level line following movement. This code will be responsible for keeping the robot moving in a straight line, following the lines on the game board. The PID control will ensure that the robot moves across the line smoothly, avoiding “bang-bang” compensation for getting off track. It is designed to proportionally compensate for any deviation from the line to ensure efficient movement.
· [image: image6.png]/ e 4 O Light Sensors
. - Line Following High
e o Line Following System [l 4 Level XBC Code

\ > Line Following PID

PSOC Code

Color Tracking System
The color tracking system will only be functional in the final round of the competition. This system will allow the robot to recognize where each of the three colored garages has been placed in order to navigate to them and place the correct objects inside.
· Color Camera

The color camera will be directly attached to the XBC in order to fully utilize the existing XBC color model system. The camera will simply feed visual data to the XBC which will then be processed by the XBC color model, and interpreted and utilized by the main strategic algorithm in the XBC.
· Movement Motor

The movement motor will have the capability of moving the camera in an approximate 90 degree arc from left to right. This will allow the robot to scan for the colored garages at the beginning of the round to plan a path for that round.
· Movement Code

The movement code will be fairly straightforward, simply utilizing the movement motor to move the camera in its full arc to scan for colored garages at the beginning of the final round.
· XBC Color Model

The XBC color model is existing functionality in the XBC system. This will allow us to easily configure three color channels for the robot to recognize from the incoming image of the color camera. The robot will then process the image and recognize the three colors we have defined. These three color channels will be referenced in the code in order to describe the robots behavior when objects are being moved to their goals. These color models in conjunction with the pre-programming before the round will define where the robot will take each of the objects. The XBC color model system will permit easy configuration at the competition, allowing for differences in lighting conditions, textures, and so forth between the test materials and the actual competition board.
· Decision Making Code

The decision making code will employ the data from the processed images and the preprogrammed data from before the round to decide where the robot will take each object based upon its weight and where it is meant to go in that round. These decisions will be used by the main strategic algorithm in order to plot the path the robot is to take from each object to each correct goal.
[image: image7.png]Movement Motor

_
e d | COIOF Camera

.
- — D
N XBC Color
Color Tracking System |gs Model

Decision
Making
Code

2.2.4 Movement System (CS & ECE Responsibility)
The movement system is perhaps one of the most important of all of the systems, and is also self-explanatory. This is the subsystem that allows the robot to physically move around the game board. This includes the physical equipment such as the wheels and encoders, as well as the code which is employed in order to utilize that hardware.
· Physical Drive-Train

The physical drive-train is exactly as it sounds. This is the hardware which facilitates the robots omni-directional movement around the game board. This is mainly comprised of the wheels and encoders which are physically attached to the bottom frame of the robot.
· Four Wheel Encoders

Each of the four wheel encoders are directly attached to a single motor, which is attached to a single wheel. These encoders allow for extremely accurate feedback as to how far the robot should have traveled, given the rotations of the motor and thus the wheels. This data can be used by the PID control of the line following system in order to ensure that both of the active wheels are traveling at the same speed so that the robot does not veer off the line. This is also used by the PID control of this system in order to insure that the robot travels a given distance with great accuracy. Many problems can arise and must be guarded against, however. The encoders cannot account for all physical variables, such as wheel slippage, and these can cause the data output by the encoders to be inaccurate.
· XBC Code

The XBC code will be kept at a high level, as usual. It will mostly be used in order to send commands to the PSOC to go a certain distance, or go until a certain landmark is found with the line following system.
· PSOC PID Code

The PSOC PID code will do a majority of the lower level work and control in this system. Using the encoders, the PSOC can ensure that the robot travels a given distance when desired. The PID portion of the code will assert that both of the wheels are traveling at the same speed, despite outside variables.
· Four Swedish Wheels

Due to the decision to make the robot omni-directional, Swedish wheels were a natural choice. These wheels provide the capability not only of moving forward and backward, but also to slide from side to side. This will allow for two of the wheels to control a relative forward and backward movement and the other two wheels to control a relative leftward and rightward movement. The inactive two wheels simply slide along on their side rollers, providing little resistance and allowing the active wheels to provide the force required.
· Movement Code

The movement code will be utilized by the main strategic algorithm of the robot in order to get where it needs to go. The movement code will strictly be concerned with single, simple commands, such as travel x distance, or travel forward until a new line intersection is encountered. This will allow for greater modularity, specialization, and re-use of the code.

Section 3: Functional Prototypes

3.1 Functions and Libraries to Be Developed or Used
Libraries:
The following libraries were written by the previous robotics team and will help facilitate communication between the PSOC and the XBC.

PSoCAPI.h

MotorController.h

PSoC_Comm.ic
The following libraries will provide an API for XBEE communication should we choose to implement it.

XBCSerial.ic

Communication.ic

Packet.ic

Array.ic
Boolean.ic
Byte.ic
Math.ic
Functions:

//General Helper Functions

void initializeVariables();

This function will initialize all global variables.

void PrintMap();

This function will print a graphical representation of the logical robot map.

//Functions to Be Run as Processes

void UpdateLightSensorArray();

This function will read which sensors are seeing black and which sensors are seeing white and will update the variable LightArray to represent the state of each sensor.

double TimeWorked();

This function will keep track of how long it takes the robot to complete all given tasks. It will return time as a double and in seconds.

//Localization and Movement Functions

bool MoveToLandmark(Landmark destination);

This function will call on the path planning function Wavefront and the movement function move to correctly move the robot from its current location to the desired destination landmark. This function accepts the desired destination as a Landmark and returns a true if it was able to successfully move to the desired destination or a false if it was unable to move to the desired destination.
void FollowLine(bool followLine);

This function accepts a boolean to determine if it supposed to stay aligned with the line it is currently on. If the passed variable folowLine is set to true, this function will maintain alignment with the line it is currently following. If the variable is set to false the function will kill any previous processes dedicated to line following and then will exit.
void move(Direction direction, Landmark Goal);

This function will move the robot one map square in the given direction by calling functions up, down, left, and right. It will also update the robot’s logical location on the map. If the robot has moved to its ultimate goal position Goal, then the function sets the global variable Found to true. This signifies that the robot has moved to and found its goal. The function accepts a Direction, direction and a Landmark, Goal.
void up();

This function physically moves the robot one map square in the northern direction.
void down();

This function physically moves the robot one map square in the southern direction.

void left();

This function physically moves the robot one map square in the western direction.

void right();

This function physically moves the robot one map square in the eastern direction.

////Lift System Functions

bool AlignWithCask(Landmark currentLocation);

This function first checks to make sure the current location is the same as the location of a cask. It then will use bend sensor data to make sure the robot’s fork lift is physically aligned with the cask in front of it. The function accepts a Landmark currentLocation and returns a boolean true or false depending on the success of the function.
bool AlignWithDropPoint(Landmark currentLocation);

This function is very similar to AlignWithCask, however this function is strictly for use with the final round’s garages. The function will first check to make sure the current location is the same as the location of a valid drop point. It will then use bend sensors and camera data from CurrentView to verify that the garage in question is the appropriate garage for the given cargo. The function will then physically align the robot with the drop point. The function accepts a Landmark currentLocation and returns a boolean true or false depending on the success of the function.

bool LiftCask();

This function physically moves the lift of the robot into the upright position.

double WeighCask();

This function weighs the cargo currently on the robot’s lift.

bool DeliverCask(Landmark destination);
This function will ultimately call upon WeighCask, MoveToLandmark, AlignWithDropPoint, and LowerAndReleaseCask. The purpose of this function is to take a cask currently on the robot’s lift and deliver it to the appropriate location. The function accepts a Landmark destination and returns a boolean true or false depending on the success of the function.
bool LowerAndReleaseCask();

This function lowers the lift of the robot and backs away from a drop point just enough to free the cask from the lift apparatus. The function returns a Boolean depending on the success of the function.

bool TurnLift(Direction direction);

This function will turn the lift of the robot either 180 degrees in the DROP_POINT_SIDE direction or the CASK_SIDE direction. The function accepts a Direction, direction and returns a true or false depending on the success of the function.

//Camera Functions

bool ScanAndMapDropPoints();

This function will be run at the beginning of the final round. The function will pan the camera from left to right to determine the order the colored garages are placed on the map. The function will then update the robot’s logical map to reflect the placement of the colored garages. The function will return a true or false depending on the success of the function.
Color CurrentView();

This function will determine what color the camera is currently looking at. It will return a Color: RED, GREEN, or BLUE.
//Wavefront Algorithm Function Headers

Direction Wavefront(Landmark Robot, Landmark Goal);

This function follow a wavefront algorithm. It will populate the robot’s logical map with path values. The function will accept the robot’s current location and the location of the goal and will return the direction of the most optimal square to move towards to reach the goal. The function calls upon LowestNeighborNodeValue, ClearOldPaths, and ClearMap.
int LowestNeighborNodeValue(int x, int y);

This function looks at node on the logical map and determines which surrounding node has the lowest value and which direction that node lies. The function accepts an x,y coordinate pair, sets the direction of the lowest node as a global variable, and returns the value of the lowest node.

void ClearOldPaths(Landmark Robot, Landmark Goal);

This function will clear the logical map of all path values and will set the location of the robot and current goal on the map. The function accepts the robot’s current location as a Landmark, Robot and the robot’s current goal as a Landmark, Goal.
void ClearMap(void);

This function will clear the map of all values except walls, the robot, or any goals.

3.2 Global Variables and Constants
//Defined values

#define DROP_POINT_SIDE 0;

#define CASK_SIDE 1;

#define RED 0;

#define GREEN 1;

#define BLUE 2;
//Structure

struct Landmark

{

int x;

int y;

};

//Typedefs

typedef int Direction;

typedef Landmark Point;

typedef int Color;

double weightOfCargo;

// Wavefront Specific Variables

const int nothing = 0;

const int goal = 1;

const int wall = 255;

const int robot = 254;

const int red
 = 256;

const int green
 = 257;

const int blue
 = 258;

const int xMax = 5;

const int yMax = 7;

//map locations

int x = 0;

int y = 0;

//when searching for a node with a lower value

int lowNodeValue = 250;

int lowNodeLocation = 0;

int highestPathNodeValue = 250;//anything above this number is a special item, ie a wall or robot

//temp variables

int scanNum = 0;

int scanNumMax = 1000;

//The representation of which light sensors will be

//off and on at a given landmark

const int LeftLandmarkArray[5][5] =

{{0, 0, 1, 0, 0},

{0, 0, 1, 0, 0},

{0, 0, 1, 1, 1},

{0, 0, 1, 0, 0},

{0, 0, 1, 0, 0}};

const int CenterLandmarkArray[5][5] =

{{0, 0, 1, 0, 0},

{0, 0, 1, 0, 0},

{1, 1, 1, 1, 1},

{0, 0, 1, 0, 0},

{0, 0, 1, 0, 0}};

const int RightLandmarkArray[5][5] =

{{0, 0, 1, 0, 0},

{0, 0, 1, 0, 0},

{1, 1, 1, 0, 0},

{0, 0, 1, 0, 0},

{0, 0, 1, 0, 0}};

const int UpDownArray[5][5] =

{{0, 0, 1, 0, 0},

{0, 0, 1, 0, 0},

{0, 0, 1, 0, 0},

{0, 0, 1, 0, 0},

{0, 0, 1, 0, 0}};

const int LeftRightArray[5][5] =

{{0, 0, 0, 0, 0},

{0, 0, 0, 0, 0},

{1, 1, 1, 1, 1},

{0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}};

//Landmarks of interest -> these will be initialized in a separate function
Landmark cask_0, cask_1, cask_2,

 drop_point_0, drop_point_1, drop_point_2,

 left_intersection, middle_intersection, right_intersection,

 robotLocation;

//Contains all coordinates of physical light sensors on the grid, Light Array
Point LightSensors[9];

//Global task milestone variables

bool Found = false;//A path has been found

bool Done = false;//Robot is done with entire program

//Logical representation of our light sensor array

//a 5X5 grid is used to help the programers visualize the light sensor array

//In reality there will be only 9 physical light sensors

int LightArray[5][5] =

{{0, 0, 0, 0, 0},

{0, 0, 0, 0, 0},

{0, 0, 0, 0, 0},

{0, 0, 0, 0, 0},

{0, 0, 0, 0, 0}};

//The logical map of the arena
//X is vertical, Y is horizontal

int Map[5][7] =

{{wall, wall, wall, wall, wall, wall, wall},

 {wall, 0, wall, 0, wall, 0, wall},

 {wall, 0, 0, 0, 0, 0, wall},

 {wall, 0, wall, 0, wall, 0, wall},

 {wall, wall, wall, wall, wall, wall, wall}};
Section 4: System Interfaces
4.1 Subsystem Interfacing Between the PSOC and XBC

The system as a whole depends a great deal upon the interface between the PSOC and the XBC controllers. These two controllers will work in tandem on nearly all of the functionality of the robot. Both have their own strengths and weaknesses, and the system has been designed to exploit the strengths of both systems while minimizing their weaknesses.
The XBC controller is more suitable for high level tasks and as such, the XBC is mostly concerned with the higher level logic and overall strategy. The XBC has many strengths which lend itself to this role, such as an easy interface to image processing.

The PSOC controller lends itself to more specialized roles than higher level logic and strategy. The strength that it gains in return is it has very fast execution speed for its dedicated tasks. This lends the PSOC towards lower end reasoning, and abstracting away the details of hardware functionality from the XBC. This allows the robot to take advantage of the speed of the PSOC, while leaving the XBC to worry about the strategy behind a round. This also has the positive impact upon the coding logic for both the XBC and the PSOC that the code can be kept very clean, modular, and focused. This also lends itself to greater code reusability and readability.

Most of the interfacing with these two systems will be such that the PSOC is connected directly to the hardware, sending and receiving electrical signals as needed to make the robot perform physically. The PSOC will receive commands from the XBC and translate and forward the appropriate low-level commands to the hardware to accomplish the overall logical task. Similarly, the PSOC will receive any signals and data from the hardware. It will process and deal with all that it can as appropriate, while translating and forwarding along the information that the XBC requires.

The XBC will control a few of the simpler hardware systems directly, but will leave most of this to the PSOC. The XBC’s primary concern will be that of the high-level strategy behind a round. It will take the pre-programmed information and combine it with the main strategic algorithm to determine its high level behavior and general path planning for the round. Most of the hardware control will be abstracted away to the PSOC, so the XBC can simply send commands to the PSOC when it needs something to be done, while then carrying on itself and focusing on the larger tasks at hand.

The hardware interface between the PSOC and the XBC will be a serial cable. The two controllers will send electrical signals to one another which will be interpreted inside the code to mean many different things.
4.2 Hardware to Software Interface Design
The interface between the hardware and software systems in the robot will be facilitated by electrical signals sent back and forth from the XBC or the PSOC and the hardware.
Some control systems, such as the lift for instance, will be designed to only accept signals from the software, and not send anything back. These systems will simply await a command and then perform some physical action. When the software wishes to activate one of these systems, a function will be called which will send out an electrical signal that can be received by the hardware and a physical task will be performed.
Some sensors will simply send data, and not receive any commands. One such example is the bend sensors, which will send a signal when they are being bent. Another example is the light sensors, which will send a signal depending on whether they are detecting light or not. These sensors each send out a particular electrical signal when some event happens. The signal travels through a wire and is received by an interface connected to the PSOC or the XBC. The receiving controller then interprets the electrical signal and uses its programmed logic in order to react to it appropriately.
Other systems will both send and receive data in some capacity. One example of one of these systems is the color camera. It will receive commands such as requests for a new snapshot of what the camera is capturing. It will then send the current frame along to the XBC to be processed, interpreted, and utilized.

When viewed as a whole, entire subsystems will both send and receive data from the software. One example is the movement system as a whole. This system will receive commands from the XBC which will be sent to the PSOC. The PSOC will in turn activate the wheel motors until they have reached a certain waypoint or traveled a certain distance as defined by the command that was received. While this is happening, the wheel encoders are sending signals back to the PSOC about the distance the robot is traveling. In this way, the system as a whole is both receiving commands and sending data.
Section 5: Notes on the User Interface
In the traditional sense of user-interfaces, there is not much of one present in this system. The robot must be autonomous, with the only user interaction being to start the robot at the beginning of a round. As such, no user interface is allowed past a certain extent.

It is required by the competition rules that each robot have a very visible red kill switch so that any observer will be able to quickly and easily shut down the robot in order to have a control for rogue robot behavior. As such, a large red button will be available on the top of the robot near the controllers to satisfy this requirement.

The other major user interface element that will be present in the robot is that of the pre-programming system. A simple menu system will be designed to be displayed on the XBC output screen. This menu system will allow the team to quickly pre-program the robot with instructions on which goals will be the destination of each of the objects. The menu system will also offer the option of selection the “final round” mode, where the robot will instead be pre-programmed with the color of the garage to which each object will be destined. This selection will also affect the main functionality of the robot, as it will bring the color recognition system into play.

No other user interface elements will be utilized or allowed in this competition.

Section 6: Notes on Modular Design
The system has been designed with the utmost modularity in mind. A full breakdown of the modularity of the system can be found in Section 2: Main Architecture.

Section 7: Languages
The languages Bit-Storm Robotics will be using are Interactive C and C.
Interactive C is an interactive version of the C language in combination with several robotics specific libraries. The libraries are useful for motor manipulation, camera usage, and other XBC specific functionality. For more information about the Interactive C language and specific XBC API please visit: http://www.botball.org/_files/ic-manuals/XBC-v2-getting-started.pdf

To compile and run Interactive C programs, as well as transfer our programs to the XBC microcontroller, Bit-Storm Robotics has decided to use the KISS Institute for Practical Robotics (K.I.P.R.) Interactive C interactive development environment.

The C language is an older programming language that will compile and run on our PSOC microcontrollers. We have decided to use Microsoft Visual Studio 2005 for development of all C code.

As Interactive C is merely and extended version of C, we do not expect any difficulty in exchanging data between IC and C portions of our code.
Section 8: Additional Design Considerations
8.1 Path Planning Algorithm
Bit-Storm Robotics will be implementing an iterative Wavefront algorithm for path finding. The algorithm for our Wavefront is as follows:

First, a 2d array is created to represent the logical map of the arena. Each square, or node, on the map is given a value:

 Nothing = 0

 Goal = 1

 Wall = 255

 Robot = 254
Red Garage = 256

Green Garage = 257

Blue Garage = 258
Once the map is set up, the path planning can begin. A path is propagated from the goal marked on the map to the location of the robot marked on the map. The first step of the algorithm is to remove any previous paths. This will be done in our code via the ClearOldPaths function. The algorithm will then step through each node in the map following these steps:

If the node is an object:

Do nothing to the current node

If the node is the robot and there is a lowest surrounding node:

A path has been found, return the direction the robot should go.

If the node is empty:

Find the lowest surrounding node value

If that value isn’t empty

Add one to the value and assign it to the current node

After checking the current node for the above conditions, move to the next node.

If a path hasn’t been found after scanning every node in the map, start scanning from the beginning. Keep re-scanning the whole map over and over until a path has been found or all empty spaces have been filled. If a path isn’t found and all empty spaces have been filled, a path will not be able to be found or obstacles should be removed from the map before running the algorithm again.

This algorithm will also call on ClearMap and LowestNeighborNodeValue node functions. The ClearMap function will set the entire map (except for the walls) to empty. It then resets the goal and robot positions. The LowestNeighborNodeValue function checks the 4 neighbor nodes of the current node. If it’s a wall, it’s ignored. If it’s nothing, it’s ignored. If it’s the robot, it’s ignored. If it has been numbered, then it records the value of the minimum neighbor node and returns the direction of that node.

8.2 Code for the Wavefront Algorithm

//populates the map with path following values

Direction Wavefront(Landmark Robot, Landmark Goal)

{

 //clear old wavefront

 ClearOldPaths(Robot, Goal);

 scanNum = 0;//reset the counter for each run!

 while(scanNum < scanNumMax)//the map can be re-scanned scanNumMax many times

 {

 x = 0;

 y = 0;

 while(x < xMax && y < yMax)//while the map hasnt been fully scanned

 {

 //if this location is a wall, can, fire, incline, or the goal, just ignore it

 if (Map[x][y] < wall && Map[x][y] != goal)

 {

 //a full path to the robot has been determined

 if (LowestNeighborNodeValue(x, y) < highestPathNodeValue && Map[x][y] == robot)

 {

 //finshed! tell robot to start moving down path

 return lowNodeLocation;

 }

 //assign a value to this node

 else if (lowNodeValue != highestPathNodeValue)

 Map[x][y] = lowNodeValue + 1;

 }

 //go to next node and/or row

 x++;

 if (y != yMax && x == xMax)

 {

 y++;

 x = 0;

 }

 }

 scanNum++;

 }

 return 0;

}

//clears old path to determine new path

void ClearOldPaths(Landmark Robot, Landmark Goal)

{

 //stay within boundary

 for(x = 0; x < xMax; x++)

 for(y = 0; y < yMax; y++)

 if (Map[x][y] != wall && Map[x][y] != red && Map[x][y] != green && Map[x][y] != blue) //if this location is something, just ignore it

 Map[x][y] = nothing;//clear the space

 //store robot location in map

 Map[Robot.x][Robot.y] = robot;

 //store robot location in map

 Map[Goal.x][Goal.y] = goal;

}

//if no solution is found, delete all objects from map

void ClearMap(void)

{

 for(x = 0; x < xMax; x++)

 for(y = 0; y < yMax; y++)

 if (Map[x][y] != wall && Map[x][y] != goal && Map[x][y] != robot)

 Map[x][y] = nothing;

}

//this function looks at a node and returns the lowest value around that node

//1 is up, 2 is right, 3 is down, and 4 is left (clockwise)

int LowestNeighborNodeValue(int x, int y)

{

 lowNodeValue = highestPathNodeValue ; //reset minimum

 //down

 if(y < yMax - 1)//not out of boundary

 if (Map[x][y+1] < lowNodeValue && Map[x][y+1] != nothing)//find the lowest number node, and exclude empty nodes (0's)

 {

 lowNodeValue = Map[x][y+1];

 lowNodeLocation = 3;

 }

 //up

 if(y > 0)

 if (Map[x][y-1] < lowNodeValue && Map[x][y-1] != nothing)

 {

 lowNodeValue = Map[x][y-1];

 lowNodeLocation = 1;

 }

 //right

 if(x < xMax - 1)

 if (Map[x+1][y] < lowNodeValue && Map[x+1][y] != nothing)

 {

 lowNodeValue = Map[x+1][y];

 lowNodeLocation = 2;

 }

 //left

 if(x > 0)

 if (Map[x-1][y] < lowNodeValue && Map[x-1][y] != nothing)

 {

 lowNodeValue = Map[x-1][y];

 lowNodeLocation = 4;

 }

 return lowNodeValue;

}
8.3 Algorithm Diagram
An illustration of an example path generated by the algorithm in 8.1 is as follows:

[image: image8.png]XBC Code

N, .| Encoders NN
ieel Encoders
/ — \b
_— —> Df,cys'ca[PSOC PID Code

rain \
Movement Syste e 4 4 Swedish Wheels

Movement
Code

The illustration shows the robot starting at the center location and moving towards the cask_0 position in the bottom left corner.
Section 9: Conclusion

In conclusion, within this document Bit-Storm Robotics has strived to meet all project requirements. All components of our requirements, (movement, navigation, object handling, and camera/color handling) are addressed physically and programmatically within our design. As such this document will serve as the foundation from which all further programmatic development will take place. With that in mind, while great thought has been put forth to design the programmatic portions of this project, design flaws and omissions are bound to take place. Changes and additions to this design document will follow the change management plan, outlined in the document “Project Plan” at http://www.cs.siue.edu/SeniorProjects/2007/fall/BitStorm/docs/ProjectPlan.doc.
For greater detail on the physical components of our design, the reader is encouraged to see the “ECE Implementation Proposal” at http://www.cs.siue.edu/SeniorProjects/2007/fall/BitStorm/docs%5CProposal.htm.

For a greater analysis of our project requirements the reader is encouraged to see the “Project Definition” at http://www.cs.siue.edu/SeniorProjects/2007/fall/BitStorm/docs%5CProject%20Definition.htm
Section 10: Glossary

	Color Model:
	This is a list of values used to define "channels" of color, that help the robot distinguish color from the picture the camera sends. Channels can be defined to represent any color. They are usually set to represent red, green, and blue. The color model values are set via the XBC firmware interface; however they can be set inside code. Setting color values within code is HIGHLY discouraged.

	Dead Reckoning:
	This is the process of estimating position based upon last known position, and factoring in heading, speed, and time elapsed in order to determine a new current position. This is often used by robots in order to calculate where the robot currently is.

	Firmware:
	 Computer programming instructions that are stored in a read-only memory unit rather than being implemented through software.

	Hard Coding:
	This is the practice of directly inserting values into code, rather than calculating them in a more flexible manner.

	Interactive C:
	A version of the C programming language used to program XBC controller based robots.

	Light Sensors:
	Devices that are mounted on the bottom of the robot in order to detect the difference between light and dark. These are frequently used for line following. If programmed correctly, and in optimal light conditions, light sensors can detect the difference between red, green, blue, white, gray, and black as each color reflects off a different amount of light back to the sensor.

	Localization:
	This is the process by which a robot determines its current position based upon sensor data such as camera or sonar.

	PID Control:
	Proportional- Integral- Derivative (PID) is a control algorithm.

	Proportional Control:
	This is the opposite of “Bang Bang” or “on-off” control. Proportional control tries to solve the problem of overcompensation by only adjusting slightly to changing conditions rather than fully reacting and thusly overcompensating.

	PSoC® :
	Programmable System-on-Chip

	XBC Controller:
	Short for Xport Botball Controller. This is a robot controller that utilizes a Game Boy Advance for its processing power, memory, and display.

W W W W W W W

W W W W

W R W

W G W W W

W W W W W W W

W W W W W W W

W W W W

W 2 R W

W G W W W

W W W W W W W

W W W W W W W

W W W W

W 2 3 R W

W G W W W

W W W W W W W

Kaitlyn Schmidt

Gabriel Sanderson

Kurt Clothier
Caleb Conner
Bit-Storm Robotics – Project Design Document, CS 425-001: Fall 2007 2

